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Abstract In this paper, we propose an improved version of receding horizon control
for systems with state delays. The proposed control guarantees closed-loop stability for
a wider class of state-delay systems than the existing one. For expanded applications,
a more generalized cost function, with three terminal weighting terms, is employed
and minimized. Terminal weighting matrices are chosen to achieve the property that
the optimal cost monotonically decreases with time. It turns out that the stability
condition depends on the delay size and then it is less conservative than the existing
delay-independent one. The simulation study shows that the proposed control scheme
guarantees closed-loop stability even for state-delay systems that cannot be stabilized
by the existing receding horizon control.

Keywords Calculus of variations and optimal control · Receding horizon control
(RHC) · Delay-dependent controls · Linear matrix inequality (LMI) · State-delay
systems · Terminal weighting matrices
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1 Introduction

For delay-free systems, the receding horizon control (RHC) has received considerable
attention [1–4] because of its many advantages, including ease of computation, good
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tracking performance, and I/O constraint handling capability, compared with the pop-
ular infinite horizon optimal controls. Since reference signals are only available over
the finite future time horizon and a variety of constraints should be imposed for prac-
tical applications, the RHC based on the finite horizon optimal controls is preferable
to the infinite horizon ones. Therefore, the RHC has been widely used, particularly in
the chemical process industries [1].

There are several previous results on the RHC for systems with state delays. A
simple control method based on the receding horizon concept appears in [5]. However,
it does not have a state weighting term in the cost function. Furthermore, it does not
guarantee closed-loop stability by design, and hence stability can be checked only
after the controller is designed. For guaranteed stability by design, the RHC with both
state and input weighting terms in the cost function is proposed in [6]. This approach
is also extended to the receding horizon H∞ control in [7]. For input-delay systems,
a primitive version appears in [8] and is generalized in [9] to enlarge the feasibility
set.

In RHC, terminal weighting matrices in the cost function are crucial for stability.
The cost functions employed in [6–10] include two terminal weighting matrices and
the LMI conditions therein for obtaining stability-guaranteeing terminal weighting
matrices are delay independent and thus conservative since information on the delay
size is not utilized. In other words, closed-loop stability is only guaranteed for a limited
class of delay systems. This implies that a certain class of state-delay systems cannot
be stabilized. It would be meaningful to make use of the delay size for reduction
of such conservatism. The cost function employed in this paper has three terminal
weighting matrices in order to enlarge the class of state-delay systems that can be
handled through the RHC.

This paper is organized as follows: In Sect. 2, the solution to the proposed RHC is
obtained through the calculus of variations. In Sect. 3, a linear matrix inequality (LMI)
condition is proposed to obtain stability-guaranteeing terminal weighting matrices. In
Sect. 4, the stability of the proposed RHC is investigated. In Sect. 5, a numerical
example is provided to illustrate the reduced conservatism of the proposed RHC.
Finally, we draw conclusions in Sect. 6.

2 Receding Horizon Control for State-Delay Systems

Consider a time-invariant and continuous time-delay system without input and state
constraints

ẋ(t) = Ax(t)+ A1x(t − h)+ Bu(t), x(τ ) = φ(τ), τ ∈ [−h, 0], (1)

where φ(t) is a differentiable function, and h > 0, x(t) ∈ R
n , and u(t) ∈ R

m are the
delay size, the state, and the input, respectively. In order to obtain an RHC, we first
consider a finite horizon cost function represented by
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J (xt0 , u, t0, t f ) =
∫ t f

t0
[xT (τ )Qx(τ )+ uT (τ )Ru(τ )]dτ + xT (t f )F1x(t f )

+
∫ t f

t f −h
xT (α)F2x(α)dα +

∫ 0

−h

∫ t f

t f +β
ẋ T (α)F3 ẋ(α)dαdβ, (2)

where xt0 = x(t0 + s), s ∈ [−h, 0], is an initial function, t0 is the initial time, t f is the
terminal time, and Q > 0, R > 0, F1 > 0, F2 > 0, and F3 > 0. t f − t0 > 0 is called
the horizon size. It is noted that the cost function (2) has three terminal weighting
terms. The optimal control minimizing the cost function (2) and the corresponding
optimal cost will be denoted by u∗(τ ), t0 ≤ τ ≤ t f , and J ∗(xt0 , t0, t f ), respectively.
It is apparent that J ∗(xt0 , t0, t f ) = J (xt0 , u∗, t0, t f ). The RHC is then obtained by
minimizing the cost function (2) with the initial time t0 and the terminal time t f

replaced by the current time t and t + Tp, respectively, where Tp is a (prediction)
horizon size. As will be shown later, the stability of the proposed RHC depends on
the choice of three terminal weighting matrices F1, F2, and F3.

As a special case, the RHC minimizing the following cost function without the
third weighting term in (2) was proposed in [6]. This corresponds to (2) with F3 = 0.
However, only a limited class of state-delay systems satisfies the LMI condition on
the stability-guaranteeing terminal weighting matrices provided in [6] with F3 = 0.
This comes from the fact that the condition is delay-independent and thus too strong.
As will be seen in the next section, we can derive a delay-dependent condition on
stability-guaranteeing terminal weighting matrices by introducing the third weighting
terms parameterized by F3. This, in turn, enables the proposed delay-dependent RHC
to stabilize a wider class of state-delay systems than the existing delay-independent
one in [6].

First, the solution to the finite horizon optimal control problem will be derived
through the calculus of variations. Second, RHC will be obtained from the derived
solution. Throughout this paper, we assume t f − t0 ≤ h for simple computation and
less memory size in computing. Since t f − t0 is replaced with the prediction horizon
size Tp in the RHC, Tp is adjusted to be less than or equal to h. After some tedious
algebraic computations, it can be easily seen that instead of (2), we have only to
minimize a new cost function J̄ (xt0 , u, t0, t f ) represented by

∫ t f

t0
[xT (τ )Q̄(τ )x(τ )+ 2xT (τ )N (τ )u(τ )+ uT (τ )R̄(τ )u(τ )

+ 2xT (τ )U (τ )x(τ − h)+ 2uT (τ )V (τ )x(τ − h)]dt + xT (t f )F1x(t f ), (3)

where Q̄(τ ), R̄(τ ), N (τ ), U (τ ), and V (τ ) are defined as

Q̄(τ ) := Q+F2+ f (τ )AT F3 A, R̄(τ ) := R + f (τ )BT F3 B, N (τ ) := f (τ )AT F3 B,

(4)

U (τ ) := f (τ )AT F3 A1, V (τ ) := f (τ )BT F3 A1, f (τ ) := (τ − t f + h). (5)
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It is apparent that the optimal control minimizing the cost function J̄ (xt0 , u, t0, t f )

also minimizes the original one J (xt0 , u, t0, t f ).
From now on, we will take the existing variational approach of optimal control

theory [11] to obtain the optimal control for the state-delay system (1). The necessary
and sufficient conditions for optimality are given as follows:

ẋ(τ ) = Ax(τ )+ A1x(τ − h)+ Bu(τ ), (6)

ṗ(τ ) = −Q̄(τ )x(τ )− N (τ )u(τ )− U (τ )x(τ − h)− AT p(τ ), (7)

0 = N T (τ )x(τ )+ R̄(τ )u(τ )+ V (τ )x(τ − h)+ BT p(τ ), p(t f ) = F1x(t f ),

(8)

for t0 ≤ τ ≤ t f , where p(t) is the costate variable. From (8), the optimal control is
represented by

u(τ ) = −R̄−1(τ )
[

N T (τ )x(τ )+ V (τ )x(τ − h)+ BT p(τ )
]
. (9)

Substituting (9) into (6) and (7) yields the following set of 2n linear differential equa-
tions:

[
ẋ(τ )
ṗ(τ )

]
=

[
A − B R̄−1(τ )N T (τ ) −B R̄−1(τ )BT

−Q̄(τ )+ N (τ )R̄−1(τ )N T (τ ) −AT + N (τ )R̄−1(τ )BT

]

×
[

x(τ )
p(τ )

]
+

[
A1 − B R̄−1(τ )V (τ )

N (τ )R̄−1(τ )V (τ )− U (τ )

]
x(τ − h), (10)

where × denotes the multiplication. In order to construct a batch form from the recur-
sive one (10), let us define the following matrix functions:

H(τ ) :=
[

A − B R̄−1(τ )N T (τ ) −B R̄−1(τ )BT

−Q̄(τ )+ N (τ )R̄−1(τ )N T (τ ) − AT + N (τ )R̄−1(τ )BT

]
,

Ā1(τ ) := A1 − B R̄−1(τ )V (τ ), Ā2(τ ) := N T (τ )R̄−1(τ )V (τ )− U (τ ),

and the state transition matrix �(·, ·) of the system as follows:

[
ẋ(τ )
ṗ(τ )

]
= H(τ )

[
x(τ )
p(τ )

]
.

replacing τ and t0 with t f and τ , respectively, using the boundary condition, and then
solving for p(τ ) yield

p(τ ) = W1(τ )x(τ )+
∫ t f −τ−h

−h
W2(τ, s)x(τ + s)ds, (11)

where W1(τ ) and W2(τ, s) will be determined later on. After substitution of (11) into
(9), the optimal control u∗(τ ) for t0 ≤ τ ≤ t f can be obtained. Then, we are in a
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position to obtain the RHC. If the initial time t0 and the terminal time t f are replaced
with t and t + Tp, respectively, and a running variable τ is fixed to t , we can obtain
the following RHC:

u∗(t) = −[R + (h − Tp)B
T F3 B]−1 BT

{
[W1(t)+ (h − Tp)F3 A]x(t)

+
∫ Tp−h

−h
W2(t, s)x(t + s)ds + (h − Tp)F3 A1x(t − h)

}
, (12)

where W1(t) and W2(t, s) are also modified just by replacing the initial and terminal
time variables. From (4) to (5), we can show that �(t + Tp, t) is a constant matrix,
which implies that it is independent of t . Therefore, we can denote W1(t) by W1.
Similarly, we can show that W2(t, s) is also independent of t . Therefore, we denote
W2(t, s) by W2(s). Finally, we obtain

u∗(t) = −[R + (h − Tp)B
T F3 B]−1 BT

{
[W1 + (h − Tp)F3 A]x(t)

+
∫ Tp−h

−h
W2(s)x(t + s)ds + (h − Tp)F3 A1x(t − h)

}
. (13)

In order to compute W1(τ ) and W2(τ, s) in (11), we have to determine the state
transition matrix for H(τ ), which may not be numerically stable because of the form of
H(τ ). In the following theorem, we provide an alternative method to obtain W1(τ ) and
W2(τ, s) in terms of nonlinear matrix partial differential equations solved backward
in time.

Theorem 2.1 The matrix W1(τ ) and W2(τ, s) satisfy the partial differential equations

Ẇ1(τ )− [W1(τ )+ f (τ )AT F3]B R̄−1(τ )BT [W1(τ )+ f (τ )F3 A]
+ AT W1(τ )+ W1(τ )A + Q̄(τ ) = 0 (14)(
∂

∂τ
− ∂

∂s

)
W2(τ, s)+ AT W2(τ, s)

− [W1(τ )+ f (τ )F3 A]T B R̄−1(τ )BT W2(τ, s) = 0, (15)

with boundary conditions

W2(τ,−h) = W1(τ )A1 + f (τ )AT F3 A1

− f (τ )[W1(τ )+ f (τ )F3 A]T B R̄(τ )−1 BT F3 A1, W1(t f ) = F1,

(16)

where t0 ≤ τ ≤ t f and −h ≤ s ≤ t f − τ − h.

Proof Taking the derivative of (11)and substituting (11) into (7), we can easily see that
W1(τ ) and W2(τ, s) should satisfy (14) and (15) with boundary condition (16). The
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boundary condition (16) follows from the relationships (8) and (11). This completes
the proof. ��

3 Monotonicity Condition of the Optimal Cost

In this section, we present a condition on the terminal weighting matrices F1, F2,
and F3, under which the optimal cost J ∗(xt0 , t0, σ ) decreases as the terminal time σ
increases. We will call it a monotonicity condition of the optimal cost on the terminal
weighting matrices.

Theorem 3.1 Assume that F1, F2, and F3 in (2) satisfy the following matrix inequality
for some K , K1, T1, T2, Y1, Y2, Y3:

⎡
⎢⎢⎣
�11 �12 �13 hY1
	 �22 �23 hY2
	 	 �33 hY3
	 	 	 −hF3

⎤
⎥⎥⎦ < 0, (17)

where 	 denotes the entries of a symmetric matrix and

�11 := F2 + Q + K T RK + Y1 + Y T
1 − T1(A + BK )− (A + BK )T T T

1

�12 := F1 + Y T
2 + T1 − (A + BK )T T T

2

�13 := Y T
3 − Y1 − T1(A1 + BK1)+ K T RK1, �22 := hF3 + T2 + T T

2 ,

�23 := −Y2 − T2(A1 + BK1), �33 := −F2 − Y3 − Y T
3 + K T

1 RK1.

The optimal cost J ∗(xt0 , t0, σ ) satisfies the following monotonicity property:

∂ J ∗(xt0 , t0, σ )

∂σ
< 0, σ > t0. (18)

Proof In (18) the derivative is computed as follows:

∂ J ∗(xt0 , t0, σ )

∂σ
= lim

→0

1




{∫ σ+


t0

[
x̄ T (τ )Qx̄(τ )+ ūT (τ )Rū(τ )

]
dτ

+ x̄ T (σ +
)F1 x̄(σ +
)+
∫ σ+


σ+
−h
x̄T (α)F2 x̄(α)dα

+
∫ 0

−h

∫ σ+


σ+
+β
˙̄xT (α)F3 ˙̄x(α)dαdβ

−
∫ σ

t0

[
x̂ T (τ )Qx̂(τ )+ ûT (τ )Rû(τ )

]
dτ − x̂ T (σ )F1 x̂(σ )

−
∫ σ

σ−h
x̂T (α)F2 x̂(α)dα −

∫ 0

−h

∫ σ

σ+β
˙̂xT (α)F3

˙̂x(α)dαdβ

}
,
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where ū(·) and û(·) are the optimal controls, which minimize the cost function for the
terminal time σ +
 and σ , respectively. x̄(·) and x̂(·) are state trajectories generated
when the system is controlled by ū(·) and û(·), respectively. Assume that the control
ū(τ ) is replaced by ũ(τ ), which is given by

ũ(τ ) =
{

û(τ ) , t0 ≤ τ < σ

K x̂(τ )+ K1 x̂(τ − h) , σ ≤ τ ≤ σ +

. (19)

Note that x̂(τ ) for τ ∈ [σ, σ +
] is the state trajectory resulting from ũ(τ ). ũ(τ ) is
not an optimal control in case that the terminal time is σ +
. Therefore, we have

∂ J∗(xt0 , t0, σ )

∂σ
≤ x̂ T (σ )Qx̂(σ )+ 2 ˙̂xT (σ )F1 x̂(σ )

+ [K x̂(σ )+ K1 x̂(σ − h)]T R[K x̂(σ )+ K1 x̂(σ − h)] + x̂ T (σ )F2 x̂(σ )

− x̂ T (σ − h)F2 x̂(σ − h)+ h ˙̂xT (σ )F3
˙̂x(σ )−

∫ σ

σ−h

˙̂xT (α)F3
˙̂x(α)dα,

where the upper bound can be easily converted to the LMI (17). This completes the
proof. ��

In the following theorem, we convert the matrix inequality (17) into an equivalent
form, which is easier to solve.

Theorem 3.2 Assume that there exist L1 > 0, L2, L3, N1, N2, N3, V , V1, U , and> 0
such that

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11 �12 �13 hN1 L1 Q
1
2 V T R

1
2 hLT

2

	 �22 �23 hN2 0 0 hLT
3

	 	 �33 hN3 0 V T
1 R

1
2 0

	 	 	 �44 0 0 0

	 	 	 	 −I 0 0

	 	 	 	 	 −I 0

	 	 	 	 	 	 −hU

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (20)

where �11, �12, �13, �22, �23, �33, and �44 are given by

�11 = L2 + LT
2 + N1 + N T

1 + W, �12 = L3 + LT
2 − (AL1 + BV )T + N T

2 ,

�13 = −N1 + N T
3 , �22 = L3 + LT

3 , �23 = −(A1L1 + BV1)− N2,

�33 = −W − N3 − N T
3 , �44 = −hL1U−1L1.

Then the matrix inequality (17) of Theorem 3.1 is feasible and terminal weight-
ing matrices satisfying the inequality (17) can be chosen to be F1 = L−1

1 , F2 =
L−1

1 W L−1
1 , and F3 = U−1.
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Proof The feasibility of (17) requires T2 + T T
2 < 0, which in turn requires T2 to be

nonsingular. Define

[
F1 0
T T

1 T T
2

]−1

= L =
[

L1 0
L2 L3

]
.

It is noted that L is nonsingular if (17) is feasible. Let’s pre- and post-multiply (17)
by diag{LT , L1, L1} and diag{L , L1, L1}, respectively, and introduce some change of
variables such that

L1 := F−1
1 , W := L1 F2L1, U := F−1

3 , V := K L1, V1 := K1L1,

LT
[

Y1
Y2

]
L1 :=

[
N1
N2

]
, L1Y3L1 := N3.

The matrix inequality (17) is then equivalently changed to (20) through the Schur
complement. This implies that (17) is feasible if (20) is feasible. This completes the
proof. ��

4 Stability of RHC

In this section, we investigate the stability of the RHC (13) using the result of the
previous section.

Theorem 4.1 Given Q > 0 and R > 0, if
∂ J∗(xt0 ,t0,σ )

∂σ
≤ 0 for σ > t0, the system (1)

controlled by the RHC (13) is asymptotically stable.

Proof If
∂ J∗(xt0 ,t0,σ )

∂σ
≤ 0 for σ > t0, we have

J ∗(xt , t, t + Tp) ≥
∫ t+θ

t
[xT (τ )Qx(τ )+ u∗T (τ )Ru∗(τ )]dτ + J ∗(xt+θ , t

+ θ, t + Tp + θ).

Rearranging the above inequality, dividing it by θ , and making x go to ∞, we
obtain d J ∗(xt , t, t + Tp)/dt ≤ −[xT (t)Qx(t) + u∗T (t)Ru∗(t)], which shows that
J ∗(xt , t, t +Tp) is non-increasing. Because J ∗(xt , t, t +Tp) ≥ 0, J ∗(xt , t, t +Tp) →
c and d J ∗(xt , t, t + Tp)/dt → 0 as t → ∞, where c is a non-negative constant. From
this, it is clear that x(t) → 0 and u∗(t) → 0 as t → ∞. Therefore, the closed-loop
system is asymptotically stable. This completes the proof. ��

From the sufficient conditions for the monotonic cost, the following theorem is
obtained.

Theorem 4.2 If the matrix inequality (20) is feasible for given Q > 0 and R > 0,
then the proposed RHC in (13) designed with terminal weighting matrices F1 = L−1

1 ,
F2 = L−1

1 W L−1
1 , and F3 = U−1 asymptotically stabilizes the system (1).
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Proof From Theorem 4.1, we see that
∂ J∗(xt0 ,t0,σ )

∂σ
≤ 0 for σ > t0 is sufficient for

asymptotic stability of the system controlled by the RHC. Feasibility of (20) is equiv-
alent to that of (17). Therefore, if we choose terminal weighting matrices such that
F1 = L−1

1 , F2 = L−1
1 W L−1

1 , F3 = U−1, the optimal cost J ∗(xt0 , t0, σ ) satisfies (18)
and resultant RHC asymptotically stabilizes the system. This completes the proof. ��

5 A Numerical Example

In this section, we provide a numerical example to show the features of the proposed
RHC.

Let us consider a liquid monopropellant rocket motor with a pressure feeding sys-
tem. A linearized version of the feeding system and combustion chamber equations,
assuming nonsteady flow, is given as follows [12]:

ϕ̇(t) = (γ − 1)ϕ(t)− γ ϕ(t − h)+ μ(t − h), μ̇1(t) = 1

ξ J

[
−ψ(t)+ p0 − p1

2
p

]
,

μ̇(t) = 1

(1 − ξ)J
[−μ(t)+ ψ(t)− Pϕ(t)], ψ̇(t) = 1

E
[μ1(t)− μ(t)],

(21)
where θg is the gas residence time in the steady operation, h = τ̄ /θg is the reduced

time lag with τ̄ the value of the time lag in steady operations, ϕ(t) = [p(t) − p̄]/ p̄,
with p(t) the instantaneous pressure in the combustion chamber and p̄ the pressure
in the combustion chamber in steady operation, μ(t) = (ṁi − ¯̇m)/ ¯̇m, with ṁi the
instantaneous mass rate of injected propellant and ¯̇m the value of ṁi in steady operation,
μ1(t) = [ṁ1(t) − ¯̇m]/ ¯̇m, with ṁ1(t) the instantaneous mass flow upstream of the
capacitance,ψ(t) = [p1(t)− p̄1]/(2
p),with p1(t) the instantaneous pressure at the
place in the feeding line where the capacitance representing the elasticity is located, p̄1
the value of p1 in steady operation and
p = p̄1− p̄ the injector pressure drop in steady
operation, p0 is the regulated gas pressure for the pressure supply, P = p̄/(2
p), γ
is the pressure exponent of the pressure dependence of the combustion process taking
place during the time lag, ξ represents the fractional length for the pressure supply, J
is the inertia parameter of the line, and E is the elasticity parameter of the line. Guided
by [12], we take u = (p0 − p1)/(2
p) as a control variable and adopt the following
representative numerical values: ξ = 0.5, γ = 1, P = 1, J = 2, E = 1, and h = 1.
Letting x(t) = [ϕ(t) μ1(t) μ(t) ψ(t)]T , the system (21) reduces to (1) with the
delay size h. It is noted that the RHC proposed in [6] cannot be applied to this system
because we can not find any stability-guaranteeing terminal weighting matrices using
the LMI condition proposed therein. For the simulation study, the weighting matrices
Q and R are set to be Q = 100I and R = I . The first step for adopting the proposed
RHC is to find terminal weighting matrices F1, F2, and F3 guaranteeing the closed-
loop stability. Solving the matrix inequality (20) using the algorithm in [13] yields
proper F1, F2, and F3. The second step is to obtain W1 and W2(s) in (13) for a
given Tp by solving (14) and (15). In order to see how the horizon size affects the
performance, we design three kinds of RHCs with the horizon sizes, Tp = 0.2, 0.6,
and 1 and apply them to the system with the given initial state φ(θ) = [1 1 1 1]T ,
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Fig. 1 State trajectories of x3 due to RHCs with different horizon sizes
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Fig. 2 State trajectories of x3 due to RHCs with different Q matrices

−h ≤ θ ≤ 0. To evaluate the performances of the designed RHCs, we employ an
integrated cost given by JI N T = ∫ 40

0 [xT (t)Qx(t)+ uT (t)Ru(t)]dt. The reason why
we chose the integration range from 0 to 40 is that the state trajectories converge to
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zero before t = 40. Figure 1 compares the state trajectories of x3 generated from
those three RHCs. It is observed that three kinds of RHCs are all stabilizing. It is
noted that JI N T decreases as Tp increases, which implies that the RHC with longer
horizon yields better performance. This in turn implies that we can improve the control
performance by adjusting the horizon size. However, increasing the horizon size leads
to bigger computational burden. This is because we have to perform integration for
the increased time range according to (13).

By adjusting the weighting matrices, we can change the state trajectories such that
they satisfy the control system requirements. We designed three RHCs for Q = I ,
Q = 10I , and Q = 100I to find out how the weighting matrix Q affects the system
response. Figure 2 compares the resultant trajectories of three RHCs. It is noted that
the faster the trajectory converges to zero the bigger value of Q we use, which is
naturally expected.

6 Conclusions

In this paper, a generalized version of the stabilizing RHC was proposed for state-
delay systems. We proposed a new type of a receding horizon cost function with
three terminal weighting terms and derived the corresponding optimal control. The
RHC based on the optimal control is obtained from the solution to nonlinear partial
differential matrix equations solved backward in time. An LMI condition was also
proposed for stability-guaranteeing terminal weighting matrices. It was shown through
simulation that the proposed RHC guarantees closed-loop stability for a wider class
of state-delay systems than the existing one since a more generalized cost function is
employed.
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