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ABSTRACT Implementing model predictive control (MPC) on a limited-performance microcontroller has
always been a great challenge. In this paper, we propose an MPC implementation method that can run on a
microcontroller by improving the calculation efficiency and address applied to the ball-and-plate system to
enhance tracking performance. First, we convert the MPC quadratic programming problem, which causes
difficulties in implementing MPC, into an equivalent nonnegative least-squares problem so that we can build
the solver in a C program easily. Subsequently, we separate the offline calculation from the online process,
which drastically reduces the calculation time. Finally, we implement the proposed MPC in a C program
to run it on a Nucleo-32 microcontroller, apply it to a tracking control problem using a laboratory-built
ball-and-plate system, and then explain the improved tracking performance compared with the conventional
control methods.

INDEX TERMS Model predictive control, quadratic programming, nonnegative least-squares,
microcontroller, ball-and-plate system.

I. INTRODUCTION
In recent decades, ball-and-plate systems have been widely
used as a basic educational tool for those who study con-
trol theory [1], [2]. Because the ball-and-plate system is
an unstable, nonlinear system, it is effective for verifying
various types of controllers and their performances and also
helping students to see and understand the control process.
Consequently, considerable research has been conducted
on linear quadratic (LQ) control [3], sliding mode con-
trol (SMC) [1], [4], fuzzy control [5], [6], and proportional-
integral-derivative neural-network control [7]. In general,
the purpose of the control of the ball-and-plate system is sta-
bilization or trajectory tracking. Stabilization means keeping
the ball on the center of the plate, and trajectory tracking
entails following a time-varying reference trajectory to draw
a certain shape on the plate, such as a circle or a rectan-
gle. However, the tracking performances found in [1]–[6]
vary significantly depending on the reference because the
controller cannot consider the time-varying reference. The
research in [8] used model predictive control (MPC) to solve
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this problem, but it has only been verified via computer
simulation.

MPC is a control technique that solves the optimization
problem at each sampling time. MPC provides a systematic
approach to handle physical constraints and reduces the tun-
ing effort for new applications [9]. However, the commercial
application of MPC on embedded systems is not widespread
because the MPC optimization problem is a quadratic pro-
gramming (QP) problem, which has intense computational
demands. This has led toMPC not being used for systems that
require fast sampling times or have a limitation on memory
resources. Although there has been significant interest in
applying MPC to robot systems (e.g., [10]–[12]), such appli-
cations still require a high-performance processor. Another
approach is to use a lookup table that is generated through
offline calculation. This approach helps to reduce online
calculation time, but it requires a huge amount of memory.

In this paper, we propose an implementation method for
embedding MPC on a microcontroller to enhance track-
ing performance of the ball-and-plate system. The main
idea is to convert the QP problem into a least-distance
problem (LDP) and then recast it to a nonnegative least-
squares (NNLS) problem. The proposed method is effective
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FIGURE 1. Photograph of the laboratory-built ball-and-plate system.

because constructing a QP solver within a C program is easy.
The C-code application of the NNLS problem is widespread
and it is even available on a website [13]. We build our own
QP solver using the existing NNLS solver and then verify the
calculation time and the quality of the tracking performance
for a sinusoidal trajectory by comparing our results with
those of other controllers such as sliding mode and linear
LQ controllers. In this study, we use the laboratory-built ball-
and-plate system (see Fig. 1) that was used in [1] and the
microcontroller board is a Nucleo-32 board, which is a low-
cost open-source piece of hardware. By using the proposed
method, the system can handle the online calculation process
in real time, thus enabling MPC be to implemented on a
small microcontroller and also allowing the applications to
be stand-alone systems.

The remainder of this paper is organized as follows:
Section II describes the hardware and the mathematical
model of the ball-and-plate system. Section III summa-
rizes the method of solving QP problem by solving the
NNLS problem. Section IV describes the implementation
method and algorithm. Section V details the analysis of
the experimental results and a comparison of tracking per-
formance of MPC with that of other controllers. Finally,
Section VI lists our conclusion.

II. BALL-AND-PLATE CONTROL SYSTEM
A. HARDWARE AND KINEMATICS
In this study, we use the laboratory-built ball-and-plate sys-
tem that was used in [1]. Most of the existing ball-and-plate
systems use a vision camera as a sensor [2], [3], [7]. To use
a vision camera, the system is usually equipped with a com-
puter to handle image processing, and the vision camera only
captures fewer than 60 frames/s. In contrast, our laboratory-
built system uses a touch panel to detect the position of the
ball. The touch panel obtains the position data every millisec-
ond and it does not require a high-performance computer.

Unlike other ball-and-plate systems, our laboratory-built
system uses a Stewart platform for actuation so that the
system has six degrees of freedom. This will be helpful for
extending its usage in the future to generate more complex
movements. Because we use six servo motors for the Stewart

FIGURE 2. Process of rotating the plate.

FIGURE 3. Diagram of the ball-and-plate system.

platform, the angles of each servo motor, δ1 to δ6, should be
calculated by using inverse kinematics to rotate the plate to
angles α and β. Then, the Stewart platform rotates the plate.
As the plate rotates, the position of the ball also changes by
x and y. This rotating procedure is shown in Fig. 2, and we
use the kinematics analysis that is explained in [1]. In Fig. 2,
αd and βd are the desired angles of the plate, αr and βr are
the actual angles, and x and y are the position of the ball.
By using this procedure, we can use the angle of the plate as
control input and the position of the ball as output.

B. MATHEMATICAL MODEL
Fig. 3 shows the conceptual diagram for a ball-and-plate
system. The linearized model of the system can be expressed
as follows [1]:

ẍ +
5
7
gα = 0, (1)

ÿ+
5
7
gβ = 0, (2)

where g is the acceleration of gravity, α and β are the angle
of the plate, and ẍ and ÿ are the acceleration of the ball with
respect to the X and Y axes, respectively.

Equations (1) and (2) are decoupled, so we can consider
them as two different single-input and single-output systems.
Therefore, we can design a controller by considering only
one axis and then apply it to both systems. The continu-
ous state-space model of the ball-and-plate system is given

VOLUME 7, 2019 39653



H. Bang, Y. S. Lee: Embedded MPC for Enhancing Tracking Performance of a Ball-and-Plate System

as follows [1]:

ẋ = Acx + Bcu,

y = Ccx, (3)

where

Ac =
[
0 1
0 0

]
, Bc =

[
0
−

5
7g

]
,

Cc =
[
1 0
0 1

]
, x =

[
x1
x2

]
. (4)

Here, x1 and x2 are the position and velocity of the ball,
respectively. Theoretically, this model can be used, but an
offset problem can occur in the experiment. This is because
the system recognizes the angle of the plate as zero when
aligning the plate horizon with the base part of the system.
Hence, we use an augmented model that includes an integra-
tion term as a new state variable. The augmented state-space
model becomes

ẋ = Aax + Bau,

y = Cax, (5)

where

Aa =

 0 1 0
0 0 0
1 0 0

 , Ba =
 0
−

5
7g
0

 ,
Ca =

 1 0 0
0 1 0
0 0 1

 , x =
 x1

x2∫
x1

 . (6)

III. NNLS-BASED MPC
In this section, we explain the method for solving the opti-
mization problem of the MPC using the solution to the
NNLS problem. Before solving the optimization problem,
we convert the given model to a discrete state-space model
as follows:

x(k + 1) = Ax(k)+ Bu(k),

y(k) = Cx(k)+ Du(k), (7)

where k is the current step, x is the state vector, u is the input
vector, and y is the output vector. The matrices A, B, C , andD
can be found easily by using the MATLAB function c2d .
Generally, the given discrete model can be used for MPC.
However, we expand the model and use the expanded model
because the ball-and-plate system has servo motors and they
have limitations in the input increment. The expanded model
can be described as follows:

x̄(k + 1) = Āx̄(k)+ B̄4u(k),

ȳ(k) = C̄x(k), (8)

where

Ā =
[
A 0
0 I

]
, B̄ =

[
B
0

]
,

C̄ =
[
C D

]
, x̄(k) =

[
x(k)
u(k)

]
. (9)

Here,4u(k) is the input increment such that u(k) = u(k−1)+
4u(k). By using this model, the MPC can consider the feed-
forward term D in the prediction and also the model makes it
easy to handle the limitation of an input increment.

A. OPTIMIZATION FOR THE MPC
The MPC solves the optimization problem at every sampling
time according to the given cost function and the constraints.
Here, the cost function can be expressed as

J =
m∑
i=1

Np∑
j=1

σi[ri(k+j)− yi(k+j)]2+λ
Nu−1∑
j=0

[4u(k+j)]2,

(10)

where m is the dimension of the output, Nu is the control
horizon, Np is the prediction horizon, r is the reference,
y is the output, σ is the weight on the tracking error, and
λ is the weight on the input increment. Equation (10) can be
expressed in vector form as follows:

J = (r − ŷ)T6(r − ŷ)+ λ4uT4u, (11)

where

3 = diag(σ1, . . . , σm),

6 = diag(3,3, . . . ,3),

4u =
[
4u(k) . . . 4u(k + Nu − 1)

]T
,

r̄i =

 r1(k + i)
...

rm(k + i)

 , ȳi =
 ŷ1(k + i)

...

ŷm(k + i)

 ,

r =


r̄1
r̄2
...

r̄Np

 , ŷ =

h̄1
h̄2
...

h̄Np

 . (12)

Here ŷ is the prediction of output and 6 is the weight matrix
on the tracking error. The prediction of output ŷ can be
calculated from the following relation:

ŷ = Fx̂(k)+ H4u(k),

F =

 CĀ
...

CĀNp

 , H =
 h1,1 . . . h1,Nu

...
. . .

...

hNp,1 . . . hNp,Nu

 ,
hj,i =

{
CĀj−iB, j ≥ i,
0, j < i.

(13)

The first term of the predicted output is a free response, which
means it is the predictive output when 4u = 0, and it can be
simply expressed as

f = Fx̂(k). (14)

By substituting (13) and (14) into (11), we can obtain the
following objective function:

J (4u) = 4uT [HT6H + λI ]4u− 2(r − f )T6TH4u

+(r − f )T6(r − f ). (15)
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The term (r− f )T6(r− f ) is a constant, which does not affect
the solution to the optimization problem. Therefore, the solu-
tion to the optimization with constraint can be expressed as
follows:

4u∗ = min
4u

{
4uT [HT6H+λI ]4u− 2(r − f )T6TH4u

}
= min
4u

{
1
2
4uT [HT6H+λI ]4u− (r − f )T6TH4u

}
,

subject to u ≤ u ≤ ū, 4u ≤ 4u ≤ 4ū, (16)

where ū and u are the maximum and minimum of the input,
respectively, and 1ū and 1u are that of the input incre-
ment, respectively. Consequently, the optimal control incre-
ment4u∗ can be calculated by solving the above optimization
problem.

B. QP ALGORITHM USING THE NNLS SOLUTION
The general form of the QP problem is given as follows:

x∗ = min
x

{
1
2
xTPx + qT x

}
, subject to Aηx ≤ bη, (17)

where P is the symmetric matrix, q is a vector, and Aη and bη
are the constraint matrix and vector, respectively. Suppose P
is positive definite. Then the QP problem becomes strictly
a convex optimization, which guarantees the existence of a
global unique solution. We define a cost function for the least
squares with the inequality (LSI) problem as

Ĵ (x) = ||
√
Px +

√
P−1q|| > 0. (18)

According to

J (x) =
1
2
[Ĵ2(x)− qTP−1q], (19)

J is a monotonically increasing function with respect to the
function Ĵ , so the argument that minimizes Ĵ also mini-
mizes J .

Therefore, the QP problem can be converted to the LSI
problem as follows:

min Ĵ (x) = ||
√
Px +

√
P−1q||,

subject to Aηx ≥ bη. (20)

According to [14], [15], the LSI problem can be reformulated
to the LDP problem. Additionally, it has been proven that
the LDP can be converted to the equivalent NNLS problem.
In this study, we apply this method to solve the QP problem.

Suppose
√
P = USV T by singular value decomposi-

tion. Because P is positive definite, there always exists the
inverse of S. Besides, U is an orthogonal matrix so that we
can express Ĵ (x) as follows:

Ĵ (x) = ||USV T (x + P−1q)|| = ||SV T (x + P−1q)||. (21)

Let

z = SV T (x + P−1q),

Az = −AηVS−1,

bz = −AηP−1q− bη. (22)

Then, by using (22), we can convert the LSI problem into the
equivalent LDP problem as follows [15]:

min
z
||z||,

subject to Azz ≥ bz. (23)

Suppose z∗ is the solution to (23); then, we can obtain z∗ from
the solution to the following NNLS problem:

min
d
||Qd − γ ||,

subject to d ≥ 0,

Q =

[
ATz

bTz

]
, γ =


0
...

0
1

 . (24)

Suppose d∗ is the solution to (24). Then the solution to the
LDP is given by the following equation [15]:

z∗ =
ATz d

∗

1− bTz d∗
. (25)

Consequently, the solution to the original QP problem can be
derived from (22) and (25) as follows:

x∗ = VS−1z∗ − P−1q. (26)

C. CONSTRAINTS
According to (16) and (17), we set P = HT6H + λI ,
q = H6(r − f ), and x = 4u. The constraint matrices
Aη and bη consider the constraints on the input and input
increments. Define

ID =


Im 0 . . . 0
0 Im . . . 0
...

...
. . .

...

0 0 . . . Im

 ,

IL =


Im 0 . . . 0
Im Im . . . 0
...

...
. . .

...

Im Im . . . Im

 , IV =

Im
Im
...

Im

 , (27)

where Im is the m × m identity matrix, and ID, IL , and IV
have proper dimensions with respect to the horizon length.
If we suppose 1U is the input sequence, which is going to
be the solution to the QP problem, then the constraints can be
expressed as follows:

ID
−ID
IL
−IL

1U ≤


IV ū
−IV u

IV (ū− uk−1)
−IV (u− uk−1)

 . (28)

From the above equation, we can obtain

Aη =


ID
−ID
IL
−IL

 , bη =


IV ū
−IV u

IV (ū− uk−1)
−IV (u− uk−1)

 . (29)
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FIGURE 4. Block diagram of the optimizer block.

IV. IMPLEMENTATION
A. ALGORITHM
This section includes our main contribution of the imple-
mentation algorithm. The proposed method for solving the
QP problem requires complex tasks such as solving the
NNLS problem, singular value decomposition, and the inver-
sion of matrices. However, because we use a time-invariant
system, the matrices P and Aη are fixed and only q and bη
change at every sampling time. Therefore, the complexity of
the calculations can be reduced by using these characteristics.

We isolate the offline tasks from the online tasks. Because
P is fixed, singular value decomposition of P and matrix
inversion can be calculated offline. Then, the online calcula-
tion includes the basic multiplication of matrices and vectors
and calculation of the NNLS problem. Fig. 4 shows these
process in detail.

FIGURE 5. Block diagram of the control process. (a) Diagram of the
control system. (b) Block diagram of the proposed MPC.

We build a code generator using MATLAB. The code gen-
erator conducts the offline calculation that is shown in Fig. 4.
Then, it generates a header file that includes all the data.
By using the generated header file, we can simply include
it and use the data in a microcontroller.

For an online process, we implement only an NNLS solver
and matrix multiplication in a C program. The NNLS solver
is widely used with C-code applications and it is available on
the website [13].

Figs. 5(a) and 5(b) show the block diagrams of the model
predictive control strategy for the ball-and-plate system.
Fig. 5(a) show the whole control process for a ball-and-plate
system and Fig. 5(b) shows the MPC process in detail.
By using this procedure, we can calculate the optimal
input sequence u∗ and then apply the first optimal input
of the sequence to the system. This procedure is conducted
repeatedly.

B. MICROCONTROLLER
We use a Nucleo-32 board, which is small and a low-cost
open-source piece of hardware. The Nucleo-32 board has
a maximum clock speed of 72 MHz. Compared to the
Intel Celeron processor (266 MHz) that is used in [16],
the Nucleo-32 board is limited not only in terms of clock
speed but also in terms of memory size. Nevertheless, the pro-
posed method can be applied to the Nucleo-32 board because
the algorithm takes this limitation into account.

V. EXPERIMENT
In this section, we demonstrate the performance of the
MPC on a ball-and-plate system through simulations and
experiments.

A. SIMULATION
Compared to the other control theories that are applied to
the ball-and-plate system such as LQ tracking and SMC [1],
the biggest advantage of using MPC is that it considers
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FIGURE 6. Sinusoidal reference tracking with a period of 2 s. (a) Position of the ball using MPC. (b) Position of the ball using SMC.
(c) Control input of the MPC. (d) Control input of the SMC. (e) Input increment of the MPC. (f) Input increment of the SMC.

the future reference and tracks it while meeting the con-
straints. To compare performances, we conducted simulations
of SMC and MPC to track a sinusoidal reference. We set the
same parameters for SMC as those used in [1]. The parame-
ters for the MPC were set as follows: m = 3, Np = 10, Nu =
5,
[
σ1 σ2 σ3

]
=
[
1.0 1.2 0.8

]
, and λ = 0.5. We assumed

that the ball-and-plate system has a limit on the input
of 0.1 and a limit on the input increment of 0.01. The results
are shown in Fig. 6. Figs. 6(a), 6(c), and 6(e) show the position
of the ball, control input, and input increment, respectively,
for the MPC case. Figs. 6(b), 6(d), and 6(f) show the posi-
tion of the ball, control input, and input increment, respec-
tively, for the SMC case. As shown in Figs. 6(a) and 6(b),
the maximum error of SMC is larger than that of MPC, which
means that the reference varies too fast for SMC to track it.
Figs. 6(c) and 6(e) show that MPC generates the control input
that meets the constraints as well as the increment constraint.

However, SMC generates the input that goes beyond the limit
as shown in Figs. 6(d) and 6(f).

B. EXPERIMENT
To illustrate the tracking performance of MPC, we conducted
three experiments under the same condition with different
controllers. We used SMC and LQ tracking control and set
the same design parameters as those used in [1]. Before
the experiment, we set the same parameters as used in the
simulation to execute the offline process for MPC. As previ-
ously mentioned in the simulation, we set the prediction hori-
zon to 10 and the control horizon to 5. These horizon lengths
are set to use the maximum amount of memory allowed by
the Nucleo-32 board.
To ensure real-time performance of MPC on the embedded

system, we measured the time taken to execute the control
loop once. We used the GPIO function of Nucleo-32 and
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FIGURE 7. Trajectories generated by three different controllers on the
X–Y plane. (a) Circle with a period of 8 s. (b) Circle with a period of 4 s.

generated a pulse that measured the time taken from sensing
the position to applying the calculated control input. The
control time was measured from the minimum of 3.3 ms to
the maximum of 6.1 ms. Therefore, it is possible to use a
sampling time of 10 ms. However, we used a sampling time
of 20ms, because the Nucleo-32 board cannot predict enough
time owing to memory limitations. At this time, the system
can predict ∼0.2 s.
Fig. 7 depicts the tracking performance of a circular tra-

jectory on the X–Y plane and Fig. 8 shows the tracking
performance on the x axis. These figures are taken at a steady-
state condition. The amplitude of the sinusoidal reference,
which is the radius of the circle trajectory in Fig. 7, is 4 cm
and the period is 4 s. As shown in Figs. 7(a) and 7(b),
every controller shows poor performances as the period
becomes shorter. Similarly, even though we use the same

FIGURE 8. Comparison of tracking performance with the period of 4 s on
the x axis. (a) MPC result. (b) SMC result. (c) LQ tracking result.

period, poor performances occur if the radius of the circle
becomes larger. However, the performance of MPC is still
acceptable because it considers the dynamic movement of
the future. In Fig. 8, the maximum errors MPC, SMC, and
LQ tracking control are approximately 1, 5, and 13 mm,
respectively.

Most of the ball-and-plate systems [1]–[7] exhibited good
performances, but only with the limitation of the amplitude
and period in the reference trajectory. They do not guarantee
good performances with a larger and faster reference trajec-
tory. In this sense, the proposed MPC on the ball-and-plate
system is effective because the proposed controller can cover
much bigger and faster references than other controllers.

VI. CONCLUSIONS
In this paper, we proposed an MPC implementation method
that runs on a microcontroller and applied it to a laboratory-
built ball-and-plate system to improve tracking perfor-
mance. We enhanced the calculation efficiency by separating
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the offline calculation from the online calculation so that
MPC can run on a Nucleo-32 microcontroller in real time.
We used the C-code application of the NNLS solver to con-
struct the QP solver that can be easily adapted to the micro-
controller. Through the experiment, we verified the tracking
performance of MPC compared to that of other controllers
that have been widely used for ball-and-plate systems.

The proposed method enables MPC implementation
in a limited performance microcontroller. Furthermore,
it is advantageous because tracking performance is greatly
improved by actually implementingMPC,which has not been
covered in most studies of ball-and-plate system control.
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